Дата на обновяване:07.02.2014

   ПЧЕЛАР / ЕЛЕКТРОНЧИК - пробвай-сам.bg

     Страница за пчеларство, пчеларски и ел.  разработки, представени като статии

Комютърът на пчелина | Нестандартни кошери | Пчеларски сайтове | Пчеларски инвентар | Размисли и идеи за пчеларството Физиотерапия, Апитерапия, Фитотерапия | Книги, Списания, РС, Интернет |  Пчеларски технологии |  Видове мед  | Пчеларски хумор

Сезонни и месечни задължения на пчеларя | Пчеларски статии на руски език | Малки Oбяви свързани с пчеларството

Информация, която е полезна за начинаещия пчелар | Използване на автомобила ... не само за предвижване - видеоклипове

 

 

 
Информация  от  ОБЛАСТЕН  ПЧЕЛАРСКИ  СЪЮЗ  - ПЛЕВЕН

 

 

Полезна и забавна информация за начинаещи с ел., радио и електронен характер, част от която с приложение и в пчеларството

- Електронни схеми, радиосхеми и устройства удобни за повторение от начинаещи;

- Снимки на фигурки изработени от електрически, разноцветни кабели. Други ел. снимки;

- Детски любителски набори - радиоконструктори за сглобяване на радиоприемници наричани играчки;

- Детекторни радиоприемници, техни модели;

- Сувенирни радиоприемници - играчки, някои от тях предназначени за ученици;

- Модулни набори - радиоконструктори от типа "Електронни кубчета" или "Мозайка" с които се работи без поялник и се захранват с батерии;

Информация за електрически и електронни компоненти и устройства, някои от които приложими и в пчеларството

- Токозахранващи устройства. Стабилизатори, преобразуватели, удвоители на напрежение;

- Импулсни стабилизатори на напрежение. Инвертори на напрежение;

- Устройства за дозареждане и компенсиране на саморазряда на акумулаторни батерии;

- Релета за време. Процедурни часовници. Схеми с ИСх 555;

- Цветомузикални устройства. Светлинни ефекти;

- Схеми за регулиране и поддържане на температура;

- Измерване на топлинния режим на радиоелектронна апаратура. Електронни термометри;

- Мрежови трансформатори. Опростени методики за изчисляването им. Електрожен;

- Зарядни устройства за Ni-Cd акумулатори;

- Устройства за имитиране гласовете на животни и птици. Мелодични звънци;

- Уреди, пробници, индикатори, генератори, тестери, измервателни приставки за любителската лаборатория;

- Металотърсачи, включително такива за откриване на метални предмети и кабели;

- Схеми на устройства, приложими за и около автомобила;

- Схеми на устройства с приложение на оптрони;

- Измерване на относителна влажност. Прецизен влагорегулатор. Поддържане на влажността на въздуха;

- Регулатори и сигнализатори за ниво на течност;

- Регулатори на мощност и на обороти;

- Опростено изчисляване на повърхността на радиатори за полупроводникови елементи;

- Схеми за управление на стъпков двигател, включително четирифазен. Енкодер/Валкодер, някои от които реализирани със стъпков двигател;

- Мощни, широколентови, операционни усилватели. Логаритмичен и антилогаритмичен усилвател;

- Електронни реле - регулатори. Реле - регулатор за лек автомобил. Стенд за проверка на реле - регулатори;

- Променливотоков регулатор. Стабилизатор за променлив ток. Ферорезонансен стабилизатор;

- Електронни схеми и устройства приложими в медицината;

- Няколко светодиодни индикатора. Икономичен светодиод. Светодиодна стрелка;

Практически приложими ел. устройства с учебна цел, реализирани с PIC16F84A, PIC16F88, PIC16F628 ... Arduino и др.

Подобряване със свои ръце възпроизвеждането на звука в дома, офиса, автомобила - subwoofer и други варианти

Радиоелектронни сайтове | Електронни библиотеки

 

 Разработки     Главна (съдържание на статиите)                         
Собствено Търсене

 

 



 

Подключение внешней SRAM 512 Кбайт к Arduino Mega. Часть 1 - Теория (Включване на външна SRAM 512 Кбайт към Arduino Mega. Часть 1 - Теория)

Часть 2Схема и подключения
Часть 3 – ПО, базовые решения

 


Очень часто при разработке приложений и систем на базе Arduino встает проблема нехватки памяти, присущая среде программирования микроконтроллеров. С помощью серия Arduino Mega возможно решение данной проблемы, т.к.имеются варианты исполнения данной платформы с Flash-памятью программ 128 КБайт или 256 КБайт. А как насчет встроенной памяти SRAM? Максимальный объем в нашем случае (Arduino Mega) не превышает 8 КБайт.


К счастью, серия Mega позволяет работать с внешней SRAM, и что самое главное, программа может получать беспрепятственно доступ к ней, как если бы это была внутренняя SRAM микроконтроллера. В статье мы рассмотрим аппаратное и программное решение задачи расширения памяти на базе микроконтроллера Atmel AVR ATmega1280.


XMEM
В техническом описании на микроконтроллер ATmega1280 содержится вся информация для инженеров, необходимая для расширения памяти. В документе это 9 глава «External Memory Interface» (XMEM). Блок схема ниже поясняет, как микроконтроллер организует связь с внешней памятью.

Рис. 1. Блок-схема организации работы с внешней памятью с помощью XMEM. Блок в центре - высокоскоростной 8-битный регистр-защелка.


Наиболее интересная часть в этой схеме – блок в центре, который представляет собой высокоскоростную 8-разрядную защелку.


Мультиплексирование и защелка
Адресное пространство Arduino Mega позволяет подключать внешнюю память объемом до 64 КБайт при 8-битной организации. Обычно для этого требуется немалое количество линий ввода/вывода: 16 для адресной шины, 8 для шины данных и как минимум еще 2 для управления.
Чтобы сократить количество используемых линий ввода/вывода, для подключения внешней памяти, микроконтроллер мультиплексирует младшие 8 адресных линий с 8 линиями данных, экономя при этом 8 линий. При такой реализации используется 8-битная защелка (8-разрядный регистр), при этом временные диаграммы работы с внешней памятью следующие:

Рис. 2. Временные диаграммы работы интерфейса внешней памяти.


Период времени, обозначенный красной линией, показывает промежуток между установкой действительного адреса (достоверные данные на линиях A0 – A15) и началом передачи данных (действительные данные на линиях D0 – D7). Логика микроконтроллера начинает операции с внешней памятью, подтверждая действительный адрес на линиях A0 – A15. Мультиплексированные линии проходят через 8-разрядный регистр-защелку, который работает в «прозрачном» режиме (transparent mode). Затем регистр переключается в режим хранения (Hold mode), при котором игнорируются изменения на входе и продолжается хранение последних принятых данных на выходе. Микроконтроллер затем устанавливает действительные данные на мультиплексированных линиях (это уже будут данные D0 – D7) и, в результате, мы имеем успешно установленные все линии для работы с внешней памятью и сохранили 8 линий ввода/вывода, которые могут понадобиться при работе основного приложения.
Стоит заметить, что регистр-защелка должен успевать работать на тактовой частоте 16 МГц, поэтому серия 74HC не подойдет для нашей цели. В техническом описании на микроконтроллер рекомендуется серия 74AHC.


Адресация при объеме SRAM более 64 КБайт
Теперь, основная задача – это работа с внешней памятью объемом 512 КБайт с адресным пространством всего на 64 КБайт. Решение – разделить 512 КБайт на 8 банков памяти по 64 КБайт и сделать управление «видимостью» одного банка в каждый момент времени с использованием 3 выводов микроконтроллера.
Память объемом 512 КБайт при обращении к ней требует 19-битного адреса (адресные линии A0 – A18). Линии A0 – A15 мы подключим по интерфейсу xmem (интерфейс внешней памяти микроконтроллера) и управление 3 оставшимися (A16 – A18) осуществим с помощью цифровых линий ввода/вывода микроконтроллера.

Рис. 3. Разделение внешней SRAM на 8 банков памяти объемом 64 КБайт.


Следующее ограничение, которое накладывает карта памяти микроконтроллеров ATmega – нижние 8 КБайт SRAM (адресное пространство для такого объема) всегда занимаются внутренней памятью микроконтроллера. Это означает, что адресация внешней памяти осуществляется в диапазоне 0х2200 – 0хFFFF, т.е. мы теряем 69632 байта из общего объема 524288 Байт внешней SRAM. В спецификации на микроконтроллер объясняется метод адресации этих потерянных 8 КБайт, однако автор посчитал, что в данной задаче это не актуально.


Во второй части статьи представлены принципиальная схема подключения внешней ОЗУ к микроконтроллеру, список компонентов и рисунки печатной платы.


На английском языке: Add 512K of external SRAM to Arduino Mega. Part 1 - Theory
Перевод: Vadim по заказу РадиоЛоцман

Add 512K of external SRAM to Arduino Mega. Part 1 - Theory
Often when prototyping with an Arduino you run into the memory limitations inherent in a microcontroller programming environment. The Arduino Mega series goes a long way to solving the program size issues, offering as it does 128Kb and 256Kb formats. But what about the SRAM? Even the mega only comes with a very small 8Kb allocation.
Thankfully the mega series comes with the ability to add additional SRAM that your programs can seamlessly access as if it were internal to the microcontroller itself. This article will explain the hardware side of the memory expansion project. The next in the series will present the software tweaks that you can use to exploit your new-found freedom to code.
XMEM
The ATmega1280 datasheet contains all the documentation that an engineer needs to expand the memory. It’s in chapter 9: ‘external memory interface’.
Block diagram of the xmem interface. The block in the center is a high-speed 8-bit latch.
The above diagram is lifted from the datasheet and shows how the microcontroller interfaces with an external memory. The most interesting part about the above diagram is the block in the center which represents a high-speed 8-bit latch.
Multiplexing and the latch
The Arduino Mega can address 64K of external memory with 8-bit data transfers. Ordinarily this would require a lot of pins: 16 for the address lines, 8 for the data lines plus another 2 at least for the control lines.
To cut down on this requirement the ATmega multiplexes the lower 8 address lines with the 8 data lines, saving on 8 pins. It does this by using an 8-bit latch that you supply, and it works because the memory transactions look like this:
The memory transaction timing
The time period indicated in red shows the gap in between the address lines being valid (valid data on A0..A15) and the data transfer starting (valid data on D0..D7). The logic in the ATmega starts a memory transaction by asserting a valid address on A0..A15. The multiplexed lines A0..A7 pass straight through the latch which is set to transparent mode. Then the latch is placed into hold mode where it ignores its inputs and continues to assert the last data it saw on its outputs. The ATmega then sets valid data on the multiplexed lines and bingo, we have successfully set up all the lines for the memory transaction and saved 8 pins in the process.
When choosing a latch we must ensure that it is fast enough to cope with the 16Mhz core clock of the Arduino. 74HC series latches are too slow. The datasheet recommends that we use the 74AHC series.
Addressing more than 64K
If you’ve got this far you’re probably wondering how I’m going to squeeze 512Kb into a 64Kb address space. The answer is to split the 512Kb into 8 banks of 64Kb and control which bank is visible at any one time by using 3 Arduino GPIO pins.
512Kb requires 19 bits of address space mapped to address lines A0..A18. I will connect A0..15 through the xmem interface and control the high bits A16..A18 using Arduino digital pins
Memory banks and the SRAM
A further limitation of the ATmega memory map is that the lower 8Kb of SRAM will always be occupied by the internal memory on the MCU. That means that we will be addressing external memory only in the range 0×2200 to 0xFFFF. This represents a total loss of 69632 bytes from the theoretical total of 524288 held by the SRAM. The datasheet does explain a method of making this ‘lost’ 8Kb addressable but it’s a bit of a hack and not really worth it IMHO.
Part 2 - Schematic and PCB


andybrown.me.uk

radiolocman.ru
 


 

 

 

Материалите подготви за сайта:

Иван Парашкевов

e-mail: ivanparst@dir.bg

 

         главна страница                   горе

 

 
 
СТАТИСТИКА
    

Copyright2007  Design by