Дата на обновяване:26.04.2013

   ПЧЕЛАР / ЕЛЕКТРОНЧИК - пробвай-сам.bg

     Страница за пчеларство, пчеларски и ел.  разработки, представени като статии

Комютърът на пчелина | Нестандартни кошери | Пчеларски сайтове | Пчеларски инвентар | Размисли и идеи за пчеларството Физиотерапия, Апитерапия, Фитотерапия | Книги, Списания, РС, Интернет |  Пчеларски технологии |  Видове мед  | Пчеларски хумор

Сезонни и месечни задължения на пчеларя | Пчеларски статии на руски език | Малки Oбяви свързани с пчеларството

Информация, която е полезна за начинаещия пчелар | Използване на автомобила ... не само за предвижване - видеоклипове

 

 

 
Информация  от  ОБЛАСТЕН  ПЧЕЛАРСКИ  СЪЮЗ  - ПЛЕВЕН

 

 

Полезна и забавна информация за начинаещи с ел., радио и електронен характер, част от която с приложение и в пчеларството

- Електронни схеми, радиосхеми и устройства удобни за повторение от начинаещи;

- Снимки на фигурки изработени от електрически, разноцветни кабели. Други ел. снимки;

- Детски любителски набори - радиоконструктори за сглобяване на радиоприемници наричани играчки;

- Детекторни радиоприемници, техни модели;

- Сувенирни радиоприемници - играчки, някои от тях предназначени за ученици;

- Модулни набори - радиоконструктори от типа "Електронни кубчета" или "Мозайка" с които се работи без поялник и се захранват с батерии;

Информация за електрически и електронни компоненти и устройства, някои от които приложими и в пчеларството

- Токозахранващи устройства. Стабилизатори, преобразуватели, удвоители на напрежение;

- Импулсни стабилизатори на напрежение. Инвертори на напрежение;

- Устройства за дозареждане и компенсиране на саморазряда на акумулаторни батерии;

- Релета за време. Процедурни часовници. Схеми с ИСх 555;

- Цветомузикални устройства. Светлинни ефекти;

- Схеми за регулиране и поддържане на температура;

- Измерване на топлинния режим на радиоелектронна апаратура. Електронни термометри;

- Мрежови трансформатори. Опростени методики за изчисляването им. Електрожен;

- Зарядни устройства за Ni-Cd акумулатори;

- Устройства за имитиране гласовете на животни и птици. Мелодични звънци;

- Уреди, пробници, индикатори, генератори, тестери, измервателни приставки за любителската лаборатория;

- Металотърсачи, включително такива за откриване на метални предмети и кабели;

- Схеми на устройства, приложими за и около автомобила;

- Схеми на устройства с приложение на оптрони;

- Измерване на относителна влажност. Прецизен влагорегулатор. Поддържане на влажността на въздуха;

- Регулатори и сигнализатори за ниво на течност;

- Регулатори на мощност и на обороти;

- Опростено изчисляване на повърхността на радиатори за полупроводникови елементи;

- Схеми за управление на стъпков двигател, включително четирифазен. Енкодер/Валкодер, някои от които реализирани със стъпков двигател;

- Мощни, широколентови, операционни усилватели. Логаритмичен и антилогаритмичен усилвател;

- Електронни реле - регулатори. Реле - регулатор за лек автомобил. Стенд за проверка на реле - регулатори;

- Променливотоков регулатор. Стабилизатор за променлив ток. Ферорезонансен стабилизатор;

- Електронни схеми и устройства приложими в медицината;

- Няколко светодиодни индикатора. Икономичен светодиод. Светодиодна стрелка;

Практически приложими ел. устройства с учебна цел, реализирани с PIC16F84A, PIC16F88, PIC16F628 ... Arduino и др.

Подобряване със свои ръце възпроизвеждането на звука в дома, офиса, автомобила - subwoofer и други варианти

Радиоелектронни сайтове | Електронни библиотеки

 

 Разработки     Главна (съдържание на статиите)                         
Собствено Търсене

 

 



Световой диммер управляемый Arduino (Светлинен регулатор на яркостта на светене, управляван с Arduino)


Переключение нагрузки переменного тока с использованием Arduino довольно просто: используется либо механическое реле, либо твердотельное реле с оптически изолированным симистором. Становится немного сложнее, если необходимо уменьшать яркость лампы переменного тока используя Arduino: просто ограничивать ток симистором не представляется возможным из-за необходимости в мощном симисторе, и как следствие необходимости рассеивания большого количества тепла, а также это не эффективно с точки зрения использования энергии.
Правильный способ реализации является применение регулирования фазы: Симистор полностью открыт, но только в части синусоидальной волны переменного тока.
Можно просто открывать симистор на некоторое количество микросекунд при помощи Arduino, но проблема в том, что непредсказуемо в какой части синусоидальной волны симистор открывается и, следовательно, уровень затемнения непредсказуем. В синусоидальной волне необходима точка отсчета.
Для этого необходим детектор пересечения нуля
. Это схема, которая сообщает Arduino (или другому микроконтроллеру), когда синусоидальная волна проходит через нуль и, следовательно, дает определенную точку на этой синусоидальной волне.
Открытие симистора на некоторое количество микросекунд, начиная от пересечения нуля, дает предсказуемый уровень затемнения.
Такую схему легко сделать: пересечение нуля берётся непосредственно из выпрямленного сетевого переменного тока - конечно через оптрон, и дает сигнал каждый раз, когда волна проходит через нуль. Так как синусоида сначала проходит двухфазное выпрямление, сигнал пересечения нуля подается независимо от того, вверх или вниз идет синусоидальная волна. Затем этот сигнал может быть использован для вызова прерывания Arduino.
Само собой разумеется, что должна быть гальваническая развязка между Arduino и сетью. Для тех, кто не понимает "гальваническая развязка", это значит "без металлических соединений", то есть ---> оптопарами.

(см. еще в конца статьи, страницы)

Схема изображенная здесь делает именно это. Сетевое напряжение 220 Вольт идет к мостовому выпрямителю через два резистора 30кОм, который выдает двухфазный выпрямленный сигнал на оптрон 4N25. Светодиод в этом оптроне при низком уровне работает на частоте 100 Гц, а на коллекторе выходит сигнал высокого уровня с частотой 100 Гц в соответствии с синусоидальной волной. Сигнал с 4N25 подается на прерывающий вывод в Arduino (или другого микропроцессора). Программа прерываний дает сигнал определенной длины на один из портов ввода/вывода. Сигнал с порта ввода/вывода сигнала уходит в нашу схему и открывает светодиод в MOC3021, который запускает оптотиристор. Светодиод последовательно MOC3021 указывает, проходит ли ток через MOC3021. Имейте в виду, что при затемнении, свечение будет не очень видно из-за коротких вспышек. Если вы решили использовать тиристорный переключатель непрерывно, то светодиод будет гореть ясно.
Имейте в виду, что только обычные лампы накаливания действительно подходят для затемнения. Схема также будет работать с галогенной лампой, но это сократит срок службы галогенной лампы. Она не будет работать с любыми КЛЛ лампами, если они специально не сделаны с возможностью диммирования.
Если у вас есть оптрон H11AA11, то его использование описано ниже.
Предупреждение: Эта схема работает с напряжением 110-220В. Не делайте её, если вы не уверены в своих действиях. Отключайте её, прежде чем приблизиться к печатной плате. Радиатор симистора подключен к сети. Не прикасайтесь к нему во время работы и сделайте для него надлежащий корпус.
Эта схема безопасна, если она собрана человеком, который знает, что делает. Если вы понятия не имеете об этом или сомневаетесь в своих действиях, то вы можете погибнуть!


Материалы
Детектор пересечения нуля
4N25 или H11AA11 (см. текст).
Резистор 10кОм.
Мостовой выпрямитель 400В.
2x Резистор 30кОм 1/2 Вт (Скорее всего на каждом резисторе будет рассеиваться 200mW).
1 разъем.
Стабилитрон 5,1В(опционально).


Драйвер лампы
Светодиод
MOC3021
Резистор 220 Ом (я использовал 330 Ом, и всё хорошо работало).
Резистор 470 Ом-1кОм (Я закончил с использованием 560 Ом, и всё хорошо работало)
Симистор TIC206
1 разъем


Прочее
Кусок текстолит 6x3см.
Провода.


Плата
Я сделал плату при помощи ЛУТ и вытравил её в растворе солянной кислоты и перекиси водорода. В интернете есть много статей на эту тему. Вы можете сделать плату, используя прилагаемый рисунок ПП. Сборка платы достаточно проста. Я использовал панельки для оптронов и мостового выпрямителя. Скачать рисунок платы и его зеркальную версию можно внизу статьи.
Примечание: рисунок платы имеет текст. В незеркальной версии рисунка текст зеркален, а в зеркальной версии рисунка текст не зеркален. Это правильно. При ЛУТ, отпечатанный рисунок переноситься непосредственно на медь, где он и выглядит правильно.
Я использовал TIC206. Он может выдавать 6 ампер. Имейте в виду, что проводники платы не выдержат 6 ампер. При подключении мощной нагрузки припаяйте провод на проводники от симистора к разъемам и на проводники ко вторым разъемам.
Если неясно значение контактов: сверху вниз по второй фотографии:
+5 вольт.
Сигнал прерывания (Digital Pin 2 Arduino).
Сигнал для симистор (выходит из Digital Pin 3 на Arduino).
GND.


ПРИМЕЧАНИЕ:
Если у вас есть оптрон H11AA11, то вам не нужен мостовой выпрямитель. H11AA11 имеет два не параллельных диода, и может работать с переменным током. Он совместим по выводам с 4N25, просто вставьте его в припоя и 2 перемычки между R5 и + и R7 и -.


Программа
Программа довольно проста. Нулевой Х сигнал генерируется в прерывании. Затем в прерывании симистор переключается на определенное время. Программа доступна ниже.
О программе: Теоретически в цикле можно было позволить переменной "i" начинается с '0 '. Однако, поскольку времени на прерывание мало, использование '0'(полностью вкл.) может немного испортить время. То же самое касается 128(полностью выкл.), хотя это кажется менее критичным. Точность '5' или, возможно, '1' является пределом настройки. Ваш диапазон может быть, например, от 2 до 126, вместо 0-128. Если у кого-то есть более точный способ настройки времени прерывания, я буду рад услышать его.


Результаты и применение
Посмотрите короткое видео о работе устройства, записанное на мобильный телефон.
Подобным способом можно сделать схему для смешивания RGB светодиодов. Это также возможно с текущей схемой, но необходимы две дополнительных симисторных схемы. Разумеется, нужен только один детектор пересечения нуля.
Также возможно сделать традиционную (назовем ей старомодной) гирлянду для рождественской елки, работающую непосредственно от 220 (или 110) вольт. Повесьте 3 провода с разными лампами на дерево и регулируйте их при помощи этой схемы с двумя дополнительными симисторными схемами.

 


Скачать скетч и файлы печатных плат


Оригинал статьи на английском языке (перевод: Александр Касьянов для сайта cxem.net)
 

Arduino controlled light dimmer: The circuit

Step 1
Arduino controlled light dimmer: The PCB
I made the PCB via direct toner transfer and then etched it in a hydrochloric acid/Hydrogenperoxide bath. There are plenty of instructables telling how to do that. You can use the attached printdesign to do the same. Populating the print is quite straightforward. I used IC feet for the optocouplers and the bridge rectifier.

Download the print from here and the mirrored one from here.

Note: the print design has text on it. In the non-mirrorrd version this text is mirrorred and in the mirrorred version the text is not mirrorred. That is correct. For the direct toner transfer, the printed side of the printed pdf file, goes directly against the copper layer for transfer. Once it is transferred, you will be looking at the ink from the other side and thus see the text normal again.

I used a TIC206. That can deliver 6 amperes. Keep in mind though that the coppertracks of the PCB will not be able to withstand 6Amperes. For any serious load, solder a piece of copepr installation wire on the tracks leading from the TRIAC to the connectors and on the track between the two connectors.

In case it is not clear what the inputs are: from top to bottom on the second picture:
+5Volts
Interrupt signal (going to D2 on arduino)
Triac signal (coming from D3 on Arduino)
Ground

NOTE:
If you have an H11AA11 optocoupler then you do not need the bridge rectifier. The H11AA11 has two anti-parellel diodes and thus can handle AC. It is pin compatible with the 4N25, just pop it in and solder 2 wirebridges between R5 and + and R7 and -

Step 2
Arduino controlled light dimmer: The software
The software is fairly easy. The zero X-ing signal generates in interrupt. The interrupt routne then switches on the Triac for a specific time. Fortunately that software is available here

/*
AC Voltage dimmer with Zero cross detection
Author: Charith Fernanado http://www.inmojo.com
Adapted by DIY_bloke
License: Creative Commons Attribution Share-Alike 3.0 License.

Attach the Zero cross pin of the module to Arduino External Interrupt pin
Select the correct Interrupt # from the below table (the Pin numbers are digital pins, NOT physical pins: digital pin 2 [INT0]=physical pin 4 and digital pin 3 [INT1]= physical pin 5)


Pin | Interrrupt # | Arduino Platform
---------------------------------------
2 | 0 | All
3 | 1 | All
18 | 5 | Arduino Mega Only
19 | 4 | Arduino Mega Only
20 | 3 | Arduino Mega Only
21 | 2 | Arduino Mega Only

In the program pin 2 is chosen
*/

int AC_LOAD = 3; // Output to Opto Triac pin
int dimming = 128; // Dimming level (0-128) 0 = ON, 128 = OFF

void setup()
{
pinMode(AC_LOAD, OUTPUT);// Set AC Load pin as output
attachInterrupt(0, zero_crosss_int, RISING); // Choose the zero cross interrupt # from the table above
}
// the interrupt function must take no parameters and return nothing
void zero_crosss_int() // function to be fired at the zero crossing to dim the light
{
// Firing angle calculation : 1 full 50Hz wave =1/50=20ms
// Every zerocrossing thus: (50Hz)-> 10ms (1/2 Cycle) For 60Hz => 8.33ms
// 10ms=10000us
// (10000us - 10us) / 128 = 75 (Approx) For 60Hz =>65
int dimtime = (75*dimming); // For 60Hz =>65
delayMicroseconds(dimtime); // Off cycle
digitalWrite(AC_LOAD, HIGH); // triac firing
delayMicroseconds(10); // triac On propogation delay (for 60Hz use 8.33)
digitalWrite(AC_LOAD, LOW); // triac Off

}

void loop() {

for (int i=5; i <= 128; i++){
dimming=i;
delay(10);
}
}


About the software: theoretically in the loop you could let variable 'i' start from '0'. However, since the timing in the interrupt is a bit of an approximation using '0' (fully on) could screw up the timing a bit. the same goes for 128 (Full off) though that seems to be less critical. Wether '5' or perhaps '1' is the limit for your set up is a matter of trying, your range may go from e.g. 2 to 126 instead of 0-128. If anybody has a more precise way to set up the timing in the interrupt I'd be happy to hear it.
Step 3: Arduino controlled lightdimmer: result & expansion
Just a quick cellphone recorded video of it's workings
Just as one can build a circuit to mix RGB LED's. This is also possible with the current circuit, albeit you need two additional TRIAC circuits.
The zero-crossing circuit is ofcourse only needed once.
perhaps this is still something for tradition (call it Old fashioned) x-mas tree lights that work directly on 220 (or 110) Volts. Hang 3 different color lamp strings in the tree and regulate them with this circuit expanded with two TRIAc circuits

The 30 k resistors will burn up 440 mW each, not 200, which means they will get pretty hot.

It is better use an optocoupler with a low-current led (and darlington output), such as a 6N138 or 6N139. These work with currents as low as 0.5 mA, so the two 30k resistors can be replaced by 100k or even 200k. Unfortunately they are not pin compatible with the 4n25.

Idea and picture from http://www.circuitsonline.net/forum/view/84403 .


Peter,
If you want to pick up the zero crossing from the secundary side of the transformer, you could use something like this:

 

 

chem.net

http://www.instructables.com/id/Arduino-controlled-light-dimmer-The-circuit/?ALLSTEPS

 

Материалите подготви за сайта:

Иван Парашкевов

e-mail: ivanparst@dir.bg

 

         главна страница                   горе

 

 
 
СТАТИСТИКА
    

Copyright2007  Design by